

Data Acquisition & Manipulation

Data Acquisition & Manipulation | 1

Table Of Contents

1. Connecting to Data 3-5

2. Data Model 6-8

3. Data Manipulation 9-11

4. Analysis Engine 12-13

5. Getting Data 14

5.1. Using Query Strings 14-15

5.2. Getting Multiple Series 15-17

6. Data Field Mapping 18-21

7. Custom Data Attributes 22-23

8. Data Engine 24-27

Data Acquisition & Manipulation | 2

Introduction
.netCHARTING provides the DataEngine object which can be used to automatically obtain data from a
variety of data sources. The DataEngine returns a SeriesCollection object which contains data that
is consumed by the chart.

The DataEngine object is instantiated like so:
[C#]
DataEngine de = new DataEngine();

[Visual Basic]
Dim de As New DataEngine()

Using data sources.

The DataEngine object internally connects to any supported data sources when a ConnectionString is
specified. Supported data sources include

l MS Access

l MS SQL

l Oracle*

l mySQL*

l ODBC*

l Excel

l XML

*Available with .net framework version 2.0 only.

Unsupported data sources can also be utilized by supplying the DataEngine with a data object such as a
DataTable.

When connecting to supported data sources data is queried by setting the SqlStatement property of the
DataEngine.

Examples
There are different methods of connecting to specific data sources. The following section demonstrates
how each supported data source can be utilized.

Access Database
[C#]
de.ConnectionString = @"Provider=Microsoft.Jet.OLEDB.4.0;user id=;password=

; data source=" + Server.MapPath("db.mdb");
// A connection string shortcut for access databases is also available.
de.ConnectionString = "db.mdb";
de.SqlStatement = @"SELECT OrderDate,Sum(Total) FROM Orders ";

[Visual Basic]
de.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;user id=;password=;"_

& "data source=" & Server.MapPath("db.mdb")
' A connection string shortcut for access databases is also available.
de.ConnectionString = "db.mdb"
de.SqlStatement = "SELECT OrderDate,Sum(Total) FROM Orders "

SQL Database
[C#]
de.ConnectionString = @"server=server name or IP;uid=username;pwd=password;database=database name";
de.SqlStatement = @"SELECT OrderDate,Sum(Total) FROM Orders ";

[Visual Basic]
de.ConnectionString = "server=server name or IP;uid=username;pwd=password;database=database name"
de.SqlStatement = "SELECT OrderDate,Sum(Total) FROM Orders "

1 Connecting to Data

Data Acquisition & Manipulation | 3

Stored Procedure
[C#]
de.StoredProcedure = "myProcedure";
de.AddParameter("@STARTDATE","3/10/02 12:00:00 AM",FieldType.Date);

[Visual Basic]
de.StoredProcedure = "myProcedure"
de.AddParameter("@STARTDATE","3/10/02 12:00:00 AM",FieldType.Date)

The AddParameter method is optionally used in conjunction with the StoredProcedure property to
specify any number of parameters for the stored procedure. The following parameter types are
supported:

l Text

l Date

l Number

l LongNumber

l Currency

l Double

Excel Files

[C#]
de.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;data source= " + Server.MapPath("myData.xls")

+ ";Extended Properties=\"Excel 8.0;\"";
de.SqlStatement= @"Select Periods,Sales from [Yearly Summary$]";

[Visual Basic]
de.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;data source=" & Server.MapPath("myData.xls") _

& ";Extended Properties=\"Excel 8.0;\""
de.SqlStatement= "Select Periods,Sales from [Yearly Summary$]"

XML Files

Xml files can be used as data sources by setting the Data property of the DataEngine with the xml
document file name:

[C#]
de.Data = "Orders.xml";

[Visual Basic]
de.Data = "Orders.xml"

Other Sources

Firebird and other unsupported sources

.netCHARTING can also parse supported data objects generated from any data source using the
respective .net providers. If you can access your data in your .NET application you can chart it
with .netCHARTING in a few simple lines of code.

Supported Data Objects

l DataSet

l DataTable

l DataView

l OleDbDataReader

l SqlDataReader

l IDataReader

l String (xml file name)

l XmlDocument

These objects are consumed by the DataEngine's Data property.

Data Acquisition & Manipulation | 4

Example:

[C#]
de.Data = myDataTable;

[Visual Basic]
de.Data = myDataTable

Data Acquisition & Manipulation | 5

.netCHARTING Data Classes

The .netCHARTING data model consists of elements which collectively become a series which can be
added to a SeriesCollection.

See Illustration

Using Data Classes

The following example creates a SeriesCollection containing one Series which contains a
single Element using the following steps.

1. Instantiates an element and sets it's properties.

2. Instantiates a series and adds the element to it.

3. Instantiates a SeriesCollection and adds the series to it.

[C#]
Element e = new Element(); // Instantiate the element
e.Name = "Element 1"; // Name it

2 Data Model

Data Class Description
Element Represents an element on the chart and facilitates the following.

l Provides properties to hold different types of data such as y value, x
value, % completed for Gantt charts and many more.
Below Element.YValue is demonstrated.

l Controls all other variables concerning a single element such as it's
label color, marker type etc.

Series Utilizes the ElementCollection class to hold a set of elements and
facilitates the following.

l Provides a mechanism for setting default properties of all elements
within it.

l Controls all series specific properties such as it's LegendEntry or 2D
line dash style (if applicable).

l Derives an element based on a Calculation which is performed on
the elements within it.

l Provides data manipulation methods such as sorting and trimming of
it's elements.

SeriesCollection Contains a collection of series and facilitates the following.

l Derives series based on a Calculation which is performed on all the
series within it.

l Provides data manipulation methods such as Transpose.
ElementCollection Used by the Series class to hold a collection of elements.

Data Acquisition & Manipulation | 6

e.YValue = 10; // Set the y value
Series s = new Series(); // Instantiate the series
s.Name = "Series 1"; // Name it
s.Elements.Add(e); // Add element e to series s.
SeriesCollection sc = new SeriesCollection(); // Instantiate a series collection
sc.Add(s); // Add series s to the series collection sc.

//The sc object now contains data we can chart which we add here.

Chart.SeriesCollection.Add(sc);

[Visual Basic]
Dim e As New Element() ' Instantiate the element
e.Name = "Element 1" ' Name it
e.YValue = 10 ' Set the y value
Dim s As New Series() ' Instantiate the series
s.Name = "Series 1" ' Name it
s.Elements.Add(e) ' Add element e to series s.
Dim sc As New SeriesCollection() ' Instantiate a series collection
sc.Add(s) ' Add series s to the series collection sc.

'The sc object now contains data we can chart which we add here.

Chart.SeriesCollection.Add(sc)

Shortcuts

.netCHARTING provides many shortcuts which can make adding data easier. The previous example can
also be achieved using the following shortcuts.

Using Chart.Series shortcut.
[C#]
Element e = new Element();
e.Name = "Element 1";
e.YValue = 10;
Chart.Series.Add(e);
Chart.SeriesCollection.Add(); // Not passing parameters will add the contents of Chart.Series to the Chart.SeriesCollection collection.

[Visual Basic]
Dim e As New Element()
e.Name = "Element 1"
e.YValue = 10
Chart.Series.Add(e)
Chart.SeriesCollection.Add() ' Not passing parameters will add the contents of Chart.Series to the Chart.SeriesCollection collection.

Using the Chart.Element shortcut.
[C#]
Chart.Series.Element.YValue = 10;
Chart.Series.Element.Name = "Element 1";
Chart.Series.Elements.Add();
Chart.SeriesCollection.Add();

[Visual Basic]
Chart.Series.Element.YValue = 10
Chart.Series.Element.Name = "Element 1"
Chart.Series.Elements.Add()
Chart.SeriesCollection.Add()

Using all the shortcuts allows us to reduce the amount of lines necessary to achieve the same result from
8 to 4. The down side is that after the data is added using these shortcuts, it cannot be retrieved for
further manipulation.

Take it to the next step

It is still possible to reduce the code even further using element constructors (C:\Documents and
Settings\All Users\Documents\dotnetCHARTING.ElementConstructor.html) .

[C#]
Chart.SeriesCollection.Add(new Element("Element1",10));

Data Acquisition & Manipulation | 7

[Visual Basic]
Chart.SeriesCollection.Add(New Element("Element1",10))

Now we took it from 8 lines to 1.

For more information on code shortcuts, see the Efficient Code ('Shortcuts and Efficient Code' in
the on-line documentation) tutorial.

Data Acquisition & Manipulation | 8

.netCHARTING facilitates numerous calculations that can be performed on your data. These calculations
can be used to

l Derive an element from a series

l Derive a series from a SeriesCollection

l The results can also be used in text reports or as further chart data.

Series.Calculate

First we will construct a simple series with some data we can manipulate.
[C#]
Series s = new Series();
s.Elements.Add(new Element("e 1",5));
s.Elements.Add(new Element("e 2",15));
s.Elements.Add(new Element("e 3",23));
s.Elements.Add(new Element("e 4",13));
s.Elements.Add(new Element("e 5",34));

[Visual Basic]
Dim s As New Series();
s.Elements.Add(new Element("e 1",5))
s.Elements.Add(new Element("e 2",15))
s.Elements.Add(new Element("e 3",23))
s.Elements.Add(new Element("e 4",13))
s.Elements.Add(new Element("e 5",34))

With our series populated with data, we can derive calculations using the Series.Calculate method which
returns a single element.

[C#]
Element e = s.Calculate("sum",Calculation.Sum);

[Visual Basic]
Dim e As Element = s.Calculate("sum",Calculation.Sum)

The element e now has yValue of 91 which is the sum of all the element yValues in series s. If the
elements of series s had other values such as BubbleSize, the resulting e.BubbleSize would contain the
sum of those as well.

Series.Sort

Elements within a series can be sorted by any value in ascending or descending order.

[C#]
// Sort the series by name
s.Sort(ElementValue.Name, "DESC");
// Sort the series by YValue
s.Sort(ElementValue.YValue, "DESC");

[Visual Basic]
' Sort the series by name
s.Sort(ElementValue.Name, "DESC")
' Sort the series by YValue
s.Sort(ElementValue.YValue, "DESC")

Series.Trim

Elements with values that are within a given range can be trimmed form a series using the Series.Trim
method.

3 Data Manipulation

The features discussed in this section require that series objects are populated with elements. This
does not happen automatically if the DataEngine is not used. Please see this kb
(http://dotnetcharting.com/kb/article.aspx?id=10392) for more information.

Data Acquisition & Manipulation | 9

[C#]
// Trim elements with y values between 15 and 20.
s.Trim(ElementValue.YValue, 15,20);

[Visual Basic]
' Trim elements with y values between 15 and 20.
s.Trim(ElementValue.YValue, 15,20)

Samples:

l seriesSort.aspx

l calendarPattern.aspx

SeriesCollection.Sort

Series in a SeriesCollection object can be sorted based on their respective element's values.

[C#]
// Consider a SeriesCollection sc that has multiple series, each with several elements.
// Sort the series by name.
sc.Sort(ElementValue.Name,"ASC");
// Sort the series by the sum of their element's y value.
sc.Sort(ElementValue.YValue,"ASC");

[Visual Basic]
' Consider a SeriesCollection sc that has multiple series, each with several elements.
' Sort the series by name.
sc.Sort(ElementValue.Name,"ASC")
' Sort the series by the sum of their element's y value.
sc.Sort(ElementValue.YValue,"ASC")

SeriesCollection.Calculate

We will first create another series and add it to 'sc' so that we have 2 series available for our calculations.

[C#]
Series s2 = new Series();
s2.Elements.Add(new Element("e 1",2));
s2.Elements.Add(new Element("e 2",45));
s2.Elements.Add(new Element("e 3",23));
s2.Elements.Add(new Element("e 4",41));
s2.Elements.Add(new Element("e 5",24));
SeriesCollection sc = new SeriesCollection();
sc.Add(s);
sc.Add(s2);

[Visual Basic]
Dim s2 As New Series();
s2.Elements.Add(new Element("e 1",2))
s2.Elements.Add(new Element("e 2",45))
s2.Elements.Add(new Element("e 3",23))
s2.Elements.Add(new Element("e 4",41))
s2.Elements.Add(new Element("e 5",24))
Dim sc As New SeriesCollection();
sc.Add(s)
sc.Add(s2)

Now we will use the SeriesCollection.Calculate method which returns a single series.

[C#]
Series s3 = sc.Calculate("Sum Series",Calculation.Sum);
sc.Add(s3);

[Visual Basic]
Dim s3 As Series = sc.Calculate("Sum Series",Calculation.Sum)
sc.Add(s3)

Our derived series now contains the sums of each 'element group' or 'elements with the same name'. The
values of series s3 will be '7,60,46,54,58'.

Calculation Shortcuts

Data Acquisition & Manipulation | 10

You can also use shortcuts to add calculated series to the chart.
[C#]
Chart.SeriesCollection.Add(s);
Chart.SeriesCollection.Add(s2);
Chart.SeriesCollection.Add(Calculation.Sum); // This will add a sum series to the chart.

[Visual Basic]
Chart.SeriesCollection.Add(s)
Chart.SeriesCollection.Add(s2)
Chart.SeriesCollection.Add(Calculation.Sum) ' This will add a sum series to the chart.

Series and element operators (+ - * /)

Series and elements can be manipulated with operators when using c#. For example, the previous code
snippet can also be achieved in this way:

[C#]

Chart.SeriesCollection.Add(s);
Chart.SeriesCollection.Add(s2);
Chart.SeriesCollection.Add(s1+s2); // This will add a sum series to the chart.

[Visual Basic]
' Visual Basic operators will be available with .net framework 2.0, however
' methods are available for this functionality.

Chart.SeriesCollection.Add(s)
Chart.SeriesCollection.Add(s2)
Chart.SeriesCollection.Add(s1.Add(s2)) // This will add a sum series to the chart.

The operators can also be used with numbers. Let's say you have a chart that shows the GDP of
countries. You can do the following: mySeries *= .000000001; If the value of an element in this series
was 7,000,000,000 (seven billon), after this operation the value will be 7. On the axis label we can then
say 'GDP (Billions)'. Operators are also useful in situations that require complex manipulation of data
such as rates.

Manually iterating elements

We can also iterate through our series collection to do custom manipulation. The following code snippet
will test each element and if the value is over 35, the color of that element will become red.

[C#]
foreach(Series mySeries in sc)

foreach(Element myElement in mySeries.Elements)
if(myElement.YValue > 35)

myElement.Color = Color.Red;

[Visual Basic]
Dim mySeries As Series
Dim myElement As Element
For Each mySeries In sc

For Each myElement in mySeries.Elements
If myElement.YValue > 35 Then

myElement.Color = Color.Red
End If

Next myElement
Next mySeries

Data Acquisition & Manipulation | 11

Introduction

The .netCHARTING analysis engine provides many statistical calculations and financial indicators allowing
quick and accurate analysis of your data.

Getting Data

The first step is to get a series of data to analyze. Please see the following tutorials as a reference on
data acquisition.

l Data Tutorials (on-line documentation)

l Financial Charts (on-line documentation)

Analysis Engine

Three classes provide the methods used for analysis.

l FinancialEngine

l StatisticalEngine

l ForecastEngine

The following code snippet demonstrates calculating the mean of a series collection.

[C#]
...
SeriesCollection mySeries = ...; // Original seriesCollection
Series resultSeries = StatisticalEngine.Mean(mySeries);

Chart.SeriesCollection.Add(resultSeries);

[Visual Basic]
...
Dim mySeries As SeriesCollection = ...(seriesCollection)... ' Original seriesCollection
Series resultSeries = StatisticalEngine.Mean(mySeries)

Chart.SeriesCollection.Add(resultSeries)

ForecastEngine

The forecast engine contains a set of simple methods to perform common forecasting operations.
However, the class also contains an advanced set of methods for users familiar with the mathematical
formulas.

IndicatorOptions

Both analysis classes contain a static Options class that provides additional options for use with the
analysis engine.

4 Analysis Engine

The features discussed in this section require that series objects are populated with elements. This
does not happen automatically if the DataEngine is not used. Please see this kb
(http://dotnetcharting.com/kb/article.aspx?id=10392) for more information.

Calculated series and financial indicators often use multiple chart areas. For more info, see:

l Multiple Chart Areas (on-line documentation)

Many samples are available under the Features / Analysis Engine section that demonstrate this
functionality.

Data Acquisition & Manipulation | 12

l PopulateSubValues
When a series is calculated down to a single element, the element values of the original series can be
included in the resulting element as SubValues ('ErrorBars and other SubValues' in the on-line
documentation).

l MatchColors
Gets or sets a value that indicates whether calculated elements will use the same colors that are
assigned to original series. Both, the original and derived data objects must be placed on the same
chart to enable this feature because colors are generally based on a palette at runtime.

The following sample demonstrates using the statistical engine's indicator options.

[C#]
...
SeriesCollection mySeries = ...; // Original seriesCollection

StatisticalEngine.Options.PopulateSubValues = true;
Element resultElement = StatisticalEngine.Mean(mySeries);

Chart.SeriesCollection.Add(resultElement);

[Visual Basic]
...
Dim mySeries As SeriesCollection ... // Original series

StatisticalEngine.IndicatorOptions.PopulateSubValues = True
Element resultElement = StatisticalEngine.Mean(mySeries)

Chart.SeriesCollection.Add(resultSeries)

A similar feature is also available in the dataEngine: PopulateDateGroupingSubValues
Property

Data Acquisition & Manipulation | 13

This tutorial describes how database queries can be used to populate chart series and elements.

Simple chart

By default, the first column returned by your query is mapped on the x axis and the second column is
mapped onto the y axis.

Consider:
'SELECT name, age FROM Employees'

This query will create a chart where the names are on the x axis, ages on the y axis, and might look
something like this:

Figure 1. Using a simple query

Multiple series from a single query

Returning a third column splits the data into series. This feature is referred to as 'SplitBy'.

Consider:
'SELECT name, age, division FROM Employees GROUP BY division'

This time 3 columns are returned and rows are grouped by the division column. Because the third column
is supplied, two series are created, one for each unique value of the division column. The resulting chart
will look something like this:

Figure 2. Multiple series using a query

Another characteristic of the splitBy functionality is the aggregation of grouped values. For this example
consider a database table with 3 fields [Date, Items_Sold, Sales_Rep] . Each day an entry is added with
the number of items sold for each sales rep. In our database there are two and they have been selling
from January - May.

Consider:
'SELECT Date, Items_Sold, Sales_Rep FROM Sales GroupBy Sales_Rep'

5 Getting Data

5.1 Using Query Strings

Data Acquisition & Manipulation | 14

In this case the sales of each representative are aggregated for each month.

* This sample also uses the dategrouping setting of (TimeInterval.Month), see dataEngine (Section 8)
for more info.

Figure 3. Multiple series with date grouping.

Count occurrences of a fields value.

For this case, let's say we have a table which is a log of logins into your main company server. The table
contains a 'date' column and a 'name' column and each row is a login entry. To show the number of
logins for each user we can use the following query:

Query:
'SELECT name, 1 FROM Orders GROUP BY name;'

This will create a table with a name and a value (1) for each login. This method takes advantage of the
DataEngine's aggregation feature and the second column will be summed.

Figure 4. Counting occurences.

Using Query Strings (Series based on field)

To get multiple series automatically using the data engine you must specify a third column in the query
string. This feature is referred to as 'SplitBy'.

Consider:

'SELECT name, age, division FROM Employees GROUP BY division'

Three columns are returned and rows are grouped by the division column. Because the third column is
supplied, two series are created, one for each unique value of the division column. The resulting chart will
look something like this:

5.2 Getting Multiple Series

Data Acquisition & Manipulation | 15

Figure 1: Returning a third column splits the data into series.

Using a single SQL Statement (Series Per Column)

Multiple series can be automatically generated for each column using multiple YValue tokens in the
DataFields property.

For example, consider the following code:

[C#]
myDataEngine.SQLStatement = "SELECT myDate, GroupA, GroupB, GroupC FROM Stats";
myDataEngine.DataFields = "XValue=myDate,YValue=GroupA,YValue=GroupB,YValue=GroupC";

[Visual Basic]
myDataEngine.SQLStatement = "SELECT myDate, GroupA, GroupB, GroupC FROM Stats"
myDataEngine.DataFields = "XValue=myDate,YValue=GroupA,YValue=GroupB,YValue=GroupC"

Assigning Series Names
This will generate three series, all of which will use the myDate column for the x values and their
individual groupX columns for y values. Custom series names can also be specified in the data fields. The
following code does the same as the above but will assign custom series names.

[C#]
myDataEngine.SQLStatement = "SELECT myDate, GroupA, GroupB, GroupC FROM Stats";
myDataEngine.DataFields = "XValue=myDate,YValue=GroupA=Group Alpha,YValue=GroupB=Group Beta,YValue=GroupC=Group Gamma";

[Visual Basic]
myDataEngine.SQLStatement = "SELECT myDate, GroupA, GroupB, GroupC FROM Stats"
myDataEngine.DataFields = "XValue=myDate,YValue=GroupA=Group Alpha,YValue=GroupB=Group Beta,YValue=GroupC=Group Gamma"

Using Data Fields (Series Per Column)

If you are getting many columns from the database and would like to specify which column to use as the
splitBy column you can do so using the DataFields property.
[C#]
myDataEngine.DataFields = "Name=name,YValue=age,SplitBy=Division";
[Visual Basic]
myDataEngine.DataFields = "Name=name,YValue=age,SplitBy=Division"

Query Database Multiple Times

Another way to do this, is to query your database separately for each series.

[C#]
DataEngine de = new DataEngine(connectionString);
de.SqlStatement = "SELECT name, dataOne FROM table";
Chart.SeriesCollection.Add(de.GetSeries());
de.SqlStatement = "SELECT name, dataTwo FROM table";
Chart.SeriesCollection.Add(de.GetSeries());

[Visual Basic]

Data Acquisition & Manipulation | 16

Dim de As New DataEngine(connectionString)
de.SqlStatement = "SELECT name, dataOne FROM table"
Chart.SeriesCollection.Add(de.GetSeries())
de.SqlStatement = "SELECT name, dataTwo FROM table"
Chart.SeriesCollection.Add(de.GetSeries())

Avoid Querying Multiple Times

If querying the database multiple times is not desirable the same can be accomplished by using a
DataTable.

[C#]
DataEngine de = new DataEngine();
DataTable dt = new DataTable();
// Populate the datatable from your database.
dt = (...);
de.Data = dt;
de.DataFields = "YAxis=name,XAxis=DataOne";
Chart.SeriesCollection.Add(de.GetSeries());
de.DataFields = "YAxis=name,XAxis=DataTwo";
Chart.SeriesCollection.Add(de.GetSeries());

[Visual Basic]
Dim de As New DataEngine()
Dim dt As New DataTable()
' Populate the datatable from your database.
dt = (...)
de.Data = dt
de.DataFields = "YAxis=name,XAxis=DataOne"
Chart.SeriesCollection.Add(de.GetSeries())
de.DataFields = "YAxis=name,XAxis=DataTwo"
Chart.SeriesCollection.Add(de.GetSeries())

Data Acquisition & Manipulation | 17

Introduction

Data Fields are a very useful tool when translating your database structure to chart data. It allows you to
map which column of your data table or query populates a given element property.

See Illustration

For example, if you have a column which represents certain information you want to use as a tool tip, it
can easily be mapped using data fields. The 'DataFields' property of DataEngine and Chart.Series is a
string which can be supplied as a comma delimited list of element property, to data column,
relationships.

For example, in the following DataFields string

"YValue=Cost,Name=Brand,ToolTip=Description"; Cost, Brand, and Description are all columns in
a data table. YValue, Name, and ToolTip are element values.

Custom tokens (Section 7) can also be used to populate elements with additional database columns
which can be used by element tool tips, urls, within labels and so on.

The following table outlines the available element values and shortcuts which can be mapped to your
data columns.

6 Data Field Mapping

Token Name Description
Name Sets Element.Name
Yvalue Sets Element.YValue or Element.YDateTime depending on the column data type.
YValueStart Sets Element.XValue or Element.XDateTime depending on the column data type.
Xvalue Sets Element.XValue or Element.XDateTime depending on the column data type.
XValueStart Sets Element.XValueStart or Element.XDateTimeStart depending on the column

data type.
BubbleSize Sets Element.BubbleSize
Complete Sets Element.Complete
Open Sets Element.Open
Close Sets Element.Close
High Sets Element.High
Low Sets Element.Low
Volume Sets Element.Volume
tooltip Sets Element.ToolTip
urltarget Sets Element.URLTarget
Url Sets Element.URL
LabelTemplate Sets Element..LabelTample

Data Acquisition & Manipulation | 18

Shortcuts and special functionality tokens

Using Data Fields
"[Token]=[Data Column],..."

Sample Data
This data will be used to demonstrate how different chart types can be achieved by mapping the
appropriate element values.

The above tables are color coded for reference to which table the column name refers. If there is more
than one example in sub sections such as 'Simple Graph', they are equivalent.

Token Name Description
Bubble Sets Element.BubbleSize
price Sets Element.Close
Ganttcomplete Sets Element.Complete
Ganttname Sets Element.Name
Ganttenddate Sets Element.YDateTime
Ganttstartdate Sets Element.YDateTimeStart
Ganttend Sets Element.YValue or Element.YDateTime if DateTime data type.
Ganttstart Sets Element.YValueStart or Element.YStartDateTime if DateTime data type.
Splitby Sets Element.SplitBy (Special)
Yaxis Sets the element values associated with the y axis of the chart in use.

 ChartType.ComboHorizaontal sets Element.Name.
 All Others set Element.Yvalue, if column type is 'DateTime' Element.YDateTime will
be set instead.

Xaxis Sets the element values associated with the x axis of the chart in use.
 ChartType.ComboHorizontal sets Element.Yvalue, if column type is 'DateTime'
Element.YDateTime will be set instead..
 ChartType.Scatter sets Element.Xvalue, if column type is 'DateTime'
Element.XDateTime will be set instead.
 All Other sets Element.Name. and/or if date it sets Element.XDateTime.

Table 1 Column (string)
Name

(double)
StartValue

(double)
EndValue

(double)
Completed

Sample Data Chris 3 15 25
Table 2 Column (string)

Name
(DateTime)
StartValue

(DateTime)
EndValue

(double)
Completed

Sample Data Chris 3/5/2003 8/10/2003 25
Table 3 Column (string) Name (double) Cost (double) TopSpeed (double) HorsePower

Sample Data Chevy 22,000 120 185
Table 4 Column (string)

Stock
(double)

Close
(double)

Open
(double)

Low
(double)

High
(DateTime)

Date
Sample Data MSFT 176 120 100 185 11/12/2003

ChartType.Combo & ChartType.ComboSideBySide
Default DataFields Defaults are chosen based on the number of columns returned by the query.

"xAxis=(1stColumn),yAxis=(2stColumn)"
"xAxis=(1stColumn),yAxis=(2stColumn),splitBy=(3rdColumn)"

Applicable tokens Element Data Properties
YValue, YValueStart, Name, Complete, Tooltip, UrlTarge, Url
Shortcuts
xAxis, yAxis, SplitBy
Gantt Shortcuts
GanttName, GanttStart, GanttEnd, GanttComplete

Examples
Simple Graph "xAxis=Name,yAxis=EndValue"

"Name=Name,yValue=EndValue"
Range (Gantt)
Columns

"xAxis=Name,yValue=EndValue,yValueStart=StartValue"

Range columns /w
Complete indicator

"xAxis=Name,yValue=EndValue,yValueStart=StartValue ,Complete=Completed"

Data Acquisition & Manipulation | 19

Date Range
columns /w
complete indicator.

"xAxis=Name,yValue=EndValue,yValueStart=StartValue ,Complete=Completed"

NOTE: For this chart type "xAxis=Name" is the same as "Name=Name".

ChartType.Horizontal
Default DataFields Defaults are chosen based on the number of columns returned by the query.

"xAxis=(1stColumn),yAxis=(2stColumn)"
"xAxis=(1stColumn),yAxis=(2stColumn),splitBy=(3rdColumn)"

Applicable tokens Element Data Properties
YValue, YValueStart, Name, Complete, Tooltip, UrlTarge, Url
Shortcuts
xAxis, yAxis, SplitBy
Gantt Shortcuts
GanttName, GanttStart, GanttEnd, GanttComplete

Examples
Simple Graph "xAxis=Name,yAxis=EndValue"

"Name=Name,yValue=EndValue"
Range (Gantt)
Columns

"xAxis=Name,yValue=EndValue,yValueStart=StartValue"

Range columns /w
Complete indicator

"xAxis=Name,yValue=EndValue,yValueStart=StartValue ,Complete=Completed"

Date Range
columns /w
complete indicator.

"xAxis=Name,yValue=EndValue,yValueStart=StartValue ,Complete=Completed"

NOTE: For this chart type "xAxis=Name" is the same as "Name=Name".

ChartType.Gantt
Default DataFields Defaults are chosen based on the number of columns returned by the query.

"yValueStart=(1stColumn),yValue=(2stColumn)"
"yValueStart=(1stColumn),yValue=(2stColumn),Name=(3rdColumn)"
"yValueStart=(1stColumn),yValue=(2ndColumn),Name=(3rdColumn),Complete=

(4thColumn)"
Applicable tokens Element Data Properties

YValue, YValueStart, Name, Complete, Tooltip, UrlTarge, Url
Shortcuts
xAxis, yAxis, SplitBy
Gantt Shortcuts
GanttName, GanttStart, GanttEnd, GanttComplete

Examples
Range (Gantt) Bars "yValueStart=StartValue,yValue=EndValue"
Range Columns /w
Complete

"yValueStart=StartValue,yValue=EndValue, Name=Name,Complete=Completed"

Date Range
Columns /w
Complete

"yValueStart=StartValue,yValue=EndValue,Name=Name,Complete=Completed"

ChartType.Radar & ChartType.Pie
Default DataFields Defaults are chosen based on the number of columns returned by the query.

"xAxis=(1stColumn),yAxis=(2stColumn)"
"xAxis=(1stColumn),yAxis=(2stColumn),splitBy=(3rdColumn)"

Applicable tokens Element Data Properties
YValue, Name, Tooltip, UrlTarge, Url
Shortcuts
xAxis, yAxis, SplitBy

Examples
Simple Chart "yAxis=EndValue,xAxis=Name"

 Note: Though there are no x and y axes in a pie chart the fields are mapped like
so:

Data Acquisition & Manipulation | 20

"yValue=EndValue,Name=Name"
 Note: The radar graph has both x and y axes.

ChartType.Scatter
Default DataFields Defaults are chosen based on the number of columns returned by the query.

"xAxis=(1stColumn),yAxis=(2stColumn)"
"xAxis=(1stColumn),yAxis=(2stColumn),splitBy=(3rdColumn)"

Applicable tokens Element Data Properties
YValue, XValue, Name, Complete, Tooltip, UrlTarge, Url
Shortcuts
xAxis, yAxis, SplitBy

Examples
Simple Scatter Chart "xAxis=HorsePower,yAxis=TopSpeed"

"xValue=HorsePower,yValue=TopSpeed"

ChartType.Bubble
Default DataFields Defaults are chosen based on the number of columns returned by the query.

"xAxis=(1stColumn),yAxis=(2stColumn)"
"xAxis=(1stColumn),yAxis=(2stColumn),BubbleSize=(3rdColumn)"

Applicable tokens Element Data Properties
YValue, XValue, BubbleSize, Name, Tooltip, UrlTarge, Url
Shortcuts
xAxis, yAxis, Bubble

Examples
Simple Scatter Chart "xAxis=HorsePower,yAxis=TopSpeed,BubbleSize=Cost"

"xValue=HorsePower,yValue=TopSpeed,Bubble=Cost"

ChartType.Financial
Default DataFields Defaults are chosen based on the number of columns returned by the query.

"xAxis=(1stColumn),yAxis=(2stColumn)"
"xAxis=(1stColumn),yAxis=(2stColumn),Volume=(3rdColumn)"

"xAxis=(1stColumn),yAxis=(2stColumn),Volume=(3rdColumn),SplitBy=
(3thColumn)"

Applicable tokens Element Data Properties
Open, Close, High, Low, Volume, Name, Complete, Tooltip, UrlTarge, Url
Shortcuts
xAxis, yAxis, SplitBy, Price

Examples
HLC Chart "xAxis=Date,High=High,Low=Low,Price=Close"

Data Acquisition & Manipulation | 21

Custom element attributes.

Additional information stored in databases can be extracted and used in a chart to provide further
information in a tool tip, an element's label, within the element's hot spot URL, and any other related text
strings.

Extracting from a database

Extracting attributes from a database can be accomplished with a single line of code using the
DataFields property of a DataEngine object..

Assume the following database columns:

l EmployeeID

l FullName

l Department

l EmailAddress

l PhoneNumber

l AveragePerformance

Using this database we will create a chart that shows each employee's name on the x axis and they're
average performance on the y axis. When we mouse over a column in the chart we want to see the
employee's ID, department, and phone number. When we click a given column we want to send the
employee an email.

The first step is to specify the DataFields property.

[C#]
DataEngine de = new DataEngine();
de.ConnectionString = "...";
de.SqlStatement = "SELECT * FROM
myTable"; de.DataFields="xAxis=FullName,yAxis=AveragePerformance,id=EmployeeID,"
+ "department=Department,email=EmailAddress,phone=PhoneNumber";
[Visual Basic]
Dim de As New DataEngine()
de.ConnectionString = "..."
de.SqlStatement = "SELECT * FROM
myTable" de.DataFields="xAxis=FullName,yAxis=AveragePerformance,id=EmployeeID,"_
& "department=Department,email=EmailAddress,phone=PhoneNumber"

The next step is to specify a template for the element's tooltip and url.

[C#]
Chart.DefaultSeries.DefaultElement.ToolTip = "ID: %id \n Department: %department \n Phone Number: %phone";
Chart.DefaultSeries.DefaultElement.URL = "mailto:%email";

[Visual Basic]
Chart.DefaultSeries.DefaultElement.ToolTip = "ID: %id " & vbCrLf &
" Department: %department " & vbCrLf & " Phone Number: %phone"
Chart.DefaultSeries.DefaultElement.URL = "mailto:%email"

This complex and highly functional chart is now ready.

Adding manually

Element attributes can be populated manually using the following method.

[C#]
Element e = new Element();
e.Name = "myElement";
e.YValue = 15;
e.CustomAttributes["Phone"] = "555-8593";
e.CustomAttributes["Department"] = "Marketing";
[Visual Basic]
Dim e As New Element()
e.Name = "myElement"
e.YValue = 15
e.CustomAttributes("Phone") = "555-8593"

7 Custom Data Attributes

Data Acquisition & Manipulation | 22

e.CustomAttributes("Department") = "Marketing"

Series Level attributes

Attributes can be added at the series level to specify information common to all elements. These can be
used in legend entry labels, legend entry tool tips and URLs.

Let's generate a SeriesCollection using the data engine object from the above example but we will modify
it to only extract elements from a specific department.

[C#]
de.SqlStatement = "SELECT * FROM myTable WHERE department = "marketing";
SeriesCollection sc = de.GetSeries();
// The above generated 1 series with a number of employee elements.
// Now we can add some attributes for this specific to the marketing department.
sc[0].Name = "Marketing";
sc[0].DefaultElement.CustomAttributes["DepartmentPhoneNumber"] = "555-2414";
sc[0].DefaultElement.CustomAttributes["DepartmentManagerName"] = "555-2414";
sc[0].DefaultElement.CustomAttributes["DepartmentAddress"] = "555-2414";
[Visual Basic]
de.SqlStatement = "SELECT * FROM myTable WHERE department = "marketing"
Dim sc As SeriesCollection
sc = de.GetSeries()
' The above generated 1 series with a number of employee elements.
' Now we can add some attributes for this specific to the marketing department.
sc(0).Name = "Marketing"
sc(0).DefaultElement.CustomAttributes("DepartmentPhoneNumber") = "555-2414"
sc(0).DefaultElement.CustomAttributes("DepartmentManagerName") = "555-2414"
sc(0).DefaultElement.CustomAttributes("DepartmentAddress") = "555-2414"

The series now has additional information stored. Let's use it in the series' legend entry tool tip.

[C#]
Chart.DefaultSeries.LegendEntry.ToolTip = "Manager: %DepartmentManager \n "

+ "Phone: %DepartmentPhoneNumber \n Address: %DepartmentAddress";
// Elements can also use the series level attributes
Chart.DefaultSeries.DefaultElement.ToolTip = "%Name \n Phone #: %phone \n "
+ "Department Phone #: %DepartmentPhoneNumber";

[Visual Basic]
Chart.DefaultSeries.LegendEntry.ToolTip = "Manager: %DepartmentManager \r "_

& "Phone: %DepartmentPhoneNumber " & vbCrLf & " Address: %DepartmentAddress";
' Elements can also use the series level attributes
Chart.DefaultSeries.DefaultElement.ToolTip = "%Name " & vbCrLf & " Phone #: %phone "_
& vbCrLf & " " & "Department Phone #: %DepartmentPhoneNumber"

The above may tool tips may look like this:

John Doe
Phone #: 555-5426
Department Phone #: 555-1349

Sample: customAttributes.aspx

Data Acquisition & Manipulation | 23

Data Engine

The DataEngine object connects to databases or consumes data objects such as a 'DataTable' and
converts them to a SeriesCollection which can then be manipulated and used to generate a chart. The
DataEngine offers many data manipulation features saving countless hours of development, particularly
for date specific aggregation.

We encourage you to review the following tutorials before working with the DataEngine:

l Connecting to Data (Section 1)

l Using DataFields (Section 6)

The basic concept of using the data engine is to specify a database, connection string and retrieve the
SeriesCollection it generates. A basic example:

[C#]
DataEngine de = new DataEngine(connectionString,queryString);
SeriesCollection mySC = de.GetSeries();

[Visual Basic]
Dim de As New DataEngine(connectionString,queryString)
SeriesCollection mySC = de.GetSeries()

Filtering out date ranges

When specifying a start and end date in a database query, the following method should be used.

[C#]
DataEngine de = new DataEngine(); // Instantiate the data engine object
de.StartDate = new DateTime(2002,1,1,8,0,0); // Specify the start date
de.EndDate = new DateTime(2002,1,1,23,59,59); // Specify the end date.
//Specify a query.
de.SqlStatement = "SELECT names, values FROM myTable WHERE start > #StartDate# AND end < #EndDate#";

[Visual Basic]
Dim de As New DataEngine() ' Instantiate the data engine object
de.StartDate = New DateTime(2002,1,1,8,0,0) ' Specify the start date
de.EndDate = New DateTime(2002,1,1,23,59,59) ' Specify the end date.
'Specify a query.
de.SqlStatement = "SELECT names, values FROM myTable WHERE start > #StartDate# AND end < #EndDate#"

Notes:

l The #StartDate# and #EndDate# tokens can be used in SQL statements in which case the dates set
for de.StartDate and de.EndDate will replace the tokens before the SqlStatement is executed.

l StartDate and EndDate properties affects the dates listed in the title when Chart.ShowDateInTitle is
used.

l All date values in your SQL statements should be wrapped with the pound symbol: #10/25/2002#,
regardless if Access or SQL server is used.

l See also DataEngine.SqlStatement | DataEngine.StartDate | DataEngine.EndDate

Date grouping

This feature controls how the values of a given series are grouped by date. In order to use this option the
first column returned by the SqlStatement must be a date/time data type.

Example 1

[C#]
de.SqlStatement = "SELECT time, unitsSold FROM sales";
de.DateGrouping = TimeInterval.Days;

[Visual Basic]
de.SqlStatement = "SELECT time, unitsSold FROM sales"
de.DateGrouping = TimeInterval.Days

8 Data Engine

Data Acquisition & Manipulation | 24

The above will create an aggregated element for each day within the start and end date of your data.
Similar options include:

l Minutes

l Hours

l Days

l Weeks

l Months

l Quarters

l Years

Example 2

[C#]
myDataEngine.SqlStatement = "SELECT time, unitsSold FROM sales";
myDataEngine.DateGrouping = TimeInterval.Day;

[Visual Basic]
myDataEngine.SqlStatement = "SELECT time, unitsSold FROM sales"
myDataEngine.DateGrouping = TimeInterval.Day

When using day instead of days, data is grouped into 24 elements representing each hour of the day. For
example, if the date range spans a week the element representing 11pm will contain the sum of all
values that fall into that hour throughout the week.

Options include:

l Hour (60 Minutes)

l Day (24 Hours)

l Week (7 Days)

l Month (31 Days)

l Quarter (3 Months)

l Year (12 Months)

See also DataEngine.DateGrouping | TimeInterval

Limiting Data

Generated data can be limited in two ways. First, you can limit the number of elements returned for each
series by using the 'Limit' property of the data engine.

[C#]
myDataEngine.Limit = "5";

[Visual Basic]
myDataEngine.Limit = "5"

Notes

l This property is a string not a numeric value.

l If DateGrouping is used, limit has no effect, you can limit the return with the StartDate and EndDate
in such a case.

l When data is limited, elements with the lowest y value are eliminated first.

The second way is to limit the number of series generated when using split by. For an example of SplitBy,
see: Tutorials > Simple Queries > Multiple Series from a Single Query.

[C#]
myDataEngine.SplitByLimit = "2";

[Visual Basic]
myDataEngine.SplitByLimit = "2"

Notes

l This property is a string not a numeric value.

l SplitBy Defined - SplitBy occurs automatically based on the values returned by the SqlStatement

Data Acquisition & Manipulation | 25

property. When a 3rd column is returned from your SQL statement it automatically creates any
number of new series based on the value provided. This value must be returned as a field in the SQL
statement defined for the series. For example if you have a number of sales by customer, you could
choose to graph those values by week in which case you would have 1 series with 4 values for a
month or, using SplitBy, you could choose to split by customer and see the individual breakdown of
sales by customer - with a separate series for each customer! See the SqlStatement property for
more information.

l Series with elements whose summed y values are the lowest are eliminated first.

l See also DataEngine.Limit | DataEngine.SplitByLimit

Show data eliminated with Limit properties

The additional series not shown due to the use of SplitByLimit, or the additional elements not shown due
to the use of Limit are aggregated into a single series or element respectively, and graphed alongside the
main data when the ShowOther property is true.

[C#]
myDataEngine.ShowOther = true;
myDataEngine.OtherElementText = "The Rest";

[Visual Basic]
myDataEngine.ShowOther = True
myDataEngine.OtherElementText = "The Rest"

Notes:

l The 'OtherElementText' property will be used as the name of the aggregated element or as the name
of the aggregated series.

l See also DataEngine.ShowOther | DataEngine.OtherElementLabel

Get data eliminated by Limit properties

If you would like to show series eliminated by Limit or SplitByLimit when drilling down or in a legend box,
the LimitMode enumeration can be used. For example if you limit data to 5 and would like to see the rest,
the LimitMode.ExcludeTop enumeration member can be used.

[C#]
myDataEngine.LimitMode = LimitMode.ExcludeTop;
myDataEngine.Limit = "5";

[Visual Basic]
myDataEngine.LimitMode = LimitMode.ExcludeTop
myDataEngine.Limit = "5"

Focus Limit on a specific Series

This feature allows limit to be bound to a specific series. First the series will be limited based on the
specified value, then .netCHARTING will automatically match any remaining series to that limit order
rather than limiting for each series independently.

[C#]
myDataEngine.Limit = "5";
myDataEngine.LimitPrimarySeries = "customers";

[Visual Basic]
myDataEngine.Limit = "5"
myDataEngine.LimitPrimarySeries = "customers"

Formatting

The data engine may populate an element's name property. The name property is a string, therefore, in
order to ensure proper formatting of those values we can set the 'FormatString' and 'CultureName'
properties of the data engine:

[C#]
myDataEngine.FormatString = "d";
myDataEngine.CultureName = "en-US";

[Visual Basic]
myDataEngine.FormatString = "d"
myDataEngine.CultureName = "en-US"

Data Acquisition & Manipulation | 26

Notes:

l "en-US" is the default culture name.

l See also DataEngine.FormatString | DataEngine.CultureName

Data Acquisition & Manipulation | 27

	Connecting to Data
	Data Model
	Data Manipulation
	Analysis Engine
	Getting Data
	Using Query Strings
	Getting Multiple Series

	Data Field Mapping
	Custom Data Attributes
	Data Engine

